Global warming discount expires soon

Caroline Alden, BURN Contributor

A recent BURN Journal post on the global carbon cycle and the fate of fossil fuel CO2 emissions – Carbon Cycle 101 – discussed how land plants and the world’s oceans slurp about half of fossil fuel CO2 emissions out of the atmosphere each year.

In other words, 50% of fossil fuel CO2 emissions are naturally sequestered by nature in land plants and ocean waters. The important corollary is that only half of the CO2 we emit each year remains in the atmosphere to trap heat and warm the globe.

Scientists have been waiting worriedly for these sinks to “saturate,” or quit taking so much extra CO2 out of the atmosphere. Models predict that land plants will soon become satisfied with the level of fertilization that extra atmospheric CO2 provides, and that ocean chemistry will soon lose its capacity to accommodate extra CO2.

A paper published last summer in Nature by researchers in Boulder, Colorado compared the growth rate of the concentration of CO2 in the atmosphere each year with the amount of CO2 put in the atmosphere by fossil fuel combustion each year since 1959.

What they found was that not only are land and ocean sinks still taking up excess CO2 from the atmosphere, but that the rate of uptake has grown steadily stronger for the last 5 decades!

sinks for caroline

Panel a shows the annual growth rate of CO2 in the atmosphere. Panel b shows emissions from fossil fuel combustion (in red) as well as land-use changes (gold). Panel c shows the difference between panels a and b, or the annual global net uptake of carbon by land and ocean sinks. The dark shaded areas represent 1-sigma uncertainties, and the light shaded areas represent 2-sigma uncertainties. (Source: Ballantyne and others, published in the journal Nature in August 2012)

This finding is both good news and bad news.

The good news is that, to date, climate change has probably been attenuated by strong natural sinks; if more of our emissions had remained in the atmosphere, the globe would have warmed more than it already has.

The bad news is that climate change is already happening, in spite of the 50% climate discount on emissions that the Earth’s natural sinks currently offer us.

That is troubling. What happens when natural sinks stop and that discount disappears?

Furthermore, these natural carbon sinks – the land sink in particular – are not permanent storage places for COand are vulnerable to extreme weather events and to climate change itself. Droughts and fires can release land carbon stores back to the atmosphere within a season.

When the land and ocean sinks saturate – and all signs say they very will soon – the impacts of each watt of electricity produced by a coal-fired power plant, of each mile driven by a gasoline-powered vehicle, and of each lawn mower lap around the back yard will be felt in full by greenhouse gas warming of the planet.

Caroline Alden is a graduate student at the Institute of Arctic and Alpine Research in the Department of Geology at the University of Colorado at Boulder.

more »

Party like it’s 399 (ppm)

By Caroline Alden, BURN Contributor

Does it matter when nature offers up round numbers? Maybe not, but for the same reasons that we attach special significance to anniversaries and birthdays ending in zero, humans treat big tick marks and bold milestones with gravitas.

For Earth’s climate, a very significant round number milestone was reached last week, when NOAA measured an atmospheric concentration of CO2 of 400 ppm at the Mauna Loa Observatory in Hawaii for the first time in modern history.

PPM – or parts per million – is a measure of concentration. 400 ppm means that for every one million parts dry air in the atmosphere (water is excluded because its concentration is variable), 400 of those parts are CO2. These ‘parts’ are moles: a chemist’s unit of measurement to keep track of molecules.

Think of the atmosphere as a big pot of soup with lots of finely chopped vegetables. Carbon dioxide is the carrots. Prior to the Industrial Revolution, if you filled a ladle with 1,000,000 really finely chopped vegetables, then you’d have found that 280 of those veggies in any given ladle-full of soup that you scooped would be carrots, or carbon dioxide.

Now, today, after we have been dumping extra chopped carrots into the soup (i.e. burning fossil fuels) for a couple hundred years, a ladle-full of 1,000,o00 veggie bits would include 400 carrot chunks (carbon dioxide). For the last few years, we have diluted the soup by about 4-5 carrot bits every year.

There are many places across the globe that measure atmospheric concentrations of carbon dioxide, but the measure of atmospheric COon Mauna Loa (Long Mountain in Hawaiian) is an important and historically significant indicator for two reasons.

First, because of the remote and high altitude location (measurements take place at a height of 2 miles above sea level), measurements of atmospheric CO2 at Mauna Loa generally come very close to representing the global mean concentration of that gas.

Keeling measuring CO2 at Mauna Loa in 1988. Photo: Scripps Institution of Oceanography/UCSD

Second, the record of CO2 at Mauna Loa represents the longest, continuous monitoring of carbon dioxide on Earth. In 1958, Charles Keeling, a scientist employed by the Scripps Institution of Oceanography in La Jolla, California, began regularly collecting samples of air from the atmosphere and measuring the concentration of CO2.

Within a few years, Keeling not only observed remarkable seasonal variability in CO(from large swaths of northern hemisphere plants breathing CO2 in and out, summer to winter), he also clearly showed – for the first time – that atmospheric CO2 was steadily increasing each year.

The canonical time history of Mauna Loa atmospheric CO2 concentrations, which scientists have relied on for 50 years, is, as a result, called the Keeling Curve.

Now. How big of an impact does a change from 280 ppm to 400 ppm have on the Earth’s climate?

To answer this question, it is best to peer back into Earth history to see what the world looked like the last time the atmosphere had 400 little carrots pieces for every million-chopped-veggie ladle full. Scientists have tried to do just that by looking at various types of ancient rocks and sediments, and even bubbles in ancient ice.

One good estimate of when atmospheric CO2 was last 400 ppm was produced by Yale researcher Mark Pagani and fellow scientists, who looked at the chemical properties of ancient ocean sediment.

What these scientists found is that the last time atmospheric CO2 reached 400 ppm was likely somewhere around 4.5 million years ago.

At that time, temperatures on the planet were an average of 4° Celsius (7.2° Fahrenheit) higher than today and sea level was about 22 meters (72 feet) higher. Because of a phenomenon known as Arctic Amplification, northern climes were even warmer – likely 19° Celsius (34.2° Fahrenheit) warmer than today.

Since the Earth’s climate system takes a little bit of time to adjust to atmospheric greenhouse gas concentrations, perhaps these are changes we might expect to see coming down the climate pipeline.

Caroline Alden is a graduate student at the Institute of Arctic and Alpine Research in the Department of Geology at the University of Colorado at Boulder.

more »

Carbon Cycle 101

Caroline Alden, BURN Contributor

Americans burn fossil fuels doing most of what we do every day – using electricity, driving to work, and buying food and goods. You probably know that the burning of fossil fuels results in the release of greenhouse gases, such as carbon dioxide (CO2), to the atmosphere. Maybe you’ve even calculated your carbon footprint.

But what about the big picture of carbon dioxide on Earth? How much CO2 is in the atmosphere already? Does it stay there forever? Leak out into outer space? (No.) Fall out of the sky as rain? (Also no.)

Carbon is everywhere, and the planet’s dynamic natural forces are continuously moving it from place to place. There are four major reservoirs, or stocks, of carbon on Earth: 1) in rocks (this includes fossil fuels), 2) dissolved in ocean water, 3) as plants, sticks, animals, and soil (which can be lumped together and called the land biosphere), and 4) as a climate-warming gas in the atmosphere.  (Check out the diagram below. Everyone loves dioramas, so it will henceforth be referred to as a diorama. You can do your best to envision it in 3D.)

carbonn cycle graphic

The Carbon Cycle (adapted from “Earth’s Climate: Past and Future,” by William F. Ruddiman)

 

In the carbon cycle diorama, the size of each reservoir  is expressed in GtC, and the transfer of carbon between reservoirs are written as GtC/yr. GtC stands for “Gigatons of Carbon”, which is the same as one billion tons of carbon.

One GtC/yr means one billion metric tons of carbon moved between reservoirs in one year. 

You can think of the carbon in each reservoir as a tiny building block – carbon is, after all, an atom. Under foot, carbon is a building block that helps create the structure of rocks and minerals. All around us, organic carbon forms the building blocks of life. In oceans and rivers, carbon is a building block of various molecules that exist together with H2O in all but the purest water. In the atmosphere, carbon is the central building block of several greenhouse gases, including carbon dioxide (CO2) and methane (CH4).

CARBON RESERVOIR I: ROCKS

The biggest carbon reservoir on earth is in rocks, weighing in at some 66 billion metric tons of carbon. In very rare instances (as in roughly .004%), carbon in rock is in the form of coal, oil or natural gas. Most of the time it occurs as a chemical component of plain old granite, sandstone or limestone.

Carbon can leave rocks and enter the atmosphere. And, it can leave the atmosphere and go back into rocks.

Here’s how the first part works: rock-bound carbon enters the atmosphere via volcanoes, as shown by the yellow arrow in the diorama. (Apologies for not having drawn in a volcano; every good diorama should have one.)

For the second part: as wind and rain break down rocks over eons, CO2 is taken out of the atmosphere and put back into “rock” form as sediment (brown arrow).

The amount of carbon that enters and exits the atmosphere from volcanoes and into sediment each year is tiny compared to the amount that we emit by fossil fuel burning. Tiny, as in volcanoes typically emit less than 1/100th the amount of CO2 that humans emit every year.

For the record, human fossil fuel emissions may have  hit 9.7 billion metric tons of carbon in 2012 (emissions are still being tallied).

When fossil fuels are burned, the CO2 released enters far less stable reservoirs: first the atmosphere, and from there the trees and plants around us, and the ocean. Let’s look at how those reservoirs function, and what happens when they can’t handle any more carbon.

CARBON RESERVOIR II: THE SEA

The next-biggest reservoir for carbon on Earth is the ocean. Scientists tend to split the ocean into two ‘pools,’ like a two-layer cake. The top layer goes from the surface to 100 meters down. Wind sloshes the water around, allowing CO2 gas to exchange with the atmosphere.

The bottom layer – or deep ocean – is bigger and less exposed to the atmosphere, and is therefore a good long-term storage place for large quantities of carbon.

Carbon moves between the ocean and atmosphere by diffusion. When the level of CO2 in the atmosphere increases, some of it dissolves into ocean water.

Now, back to our diorama. Notice that the value of the white “into-the-ocean” arrow is slightly bigger than that of the blue “out-of-the-ocean” arrow. This indicates that the ocean is sucking up excess carbon from the atmosphere.

It is fabulously useful that the ocean absorbs some of the excess CO2 in the atmosphere. Due to this imbalance, the oceans have been offering us a major (25%) global warming discount every year. In other words, 25% of fossil fuel carbon we emit gets drawn into the ocean for good. If the ocean weren’t such a sink for CO2, more would remain in the atmosphere, and more global warming would be happening.

There is a very bad downside to this discount, however. When ocean water absorbs carbon, it becomes more acidic. Hence the current degradation of the world’s coral reefs.

Furthermore, this discount won’t last for too much longer. The ocean’s chemistry will soon hit a threshold where it will stop absorbing CO2. When that day comes, we’ll have to reckon with much more global warming impact from each coal reserve and tank of gas that we burn.

CARBON RESERVOIRS III & IV: THE ATMOSPHERE & LAND PLANTS

The final reservoirs for carbon are the atmosphere and the terrestrial biosphere. As you can see in the diorama, they hold roughly equal amounts of carbon – a quantity close to that of the surface ocean.

Plants draw CO2 out of the atmosphere during photosynthesis. CO2 is plant food. During the night, some of that CO2 is returned to the atmosphere. When plants die and decompose, all of the rest of that CO2 is either returned to the atmosphere or turns to organic matter in soil.

Before the industrial revolution, the atmosphere contained roughly 600 GtC. As of March 2013, that number had risen to 843 GtC: a 40% increase. If the world’s oceans and plants hadn’t been sucking excess CO2 out of the atmosphere all these years, the increased burden of CO2 in the atmosphere could be something closer to 60 or 70%.

You’re rereading that sentence, aren’t you? Yes, that’s right. It’s not just the oceans; land plants are also sucking more CO2 out of the atmosphere than they are emitting back to the atmosphere. In fact, plants and the sea combined provide a 50% discount on emissions… as in, if these natural systems weren’t absorbing CO2, global warming would be twice as bad. This is an unbelievable stroke of good fortune for humans today.

The plant half of the discount is occurring because plants like a little bit of extra CO2 in the air – they use CO2 like we use food.

Sadly, though, we are close to reaching a level of atmospheric CO2 where plants will stop absorbing excess carbon from the atmosphere. Like a kid in a candy store, even plants hit the wall at some point and can eat no more.

As you can see, once carbon is unlocked from long-term storage as fossil fuels, that carbon goes into the atmosphere, land plants, and the surface ocean. One small forest fire, and all of the carbon stored in land plants returns to the atmosphere again to increase global warming. One Gigaton too many into the oceans and their waters will stop absorbing CO2.

The carbon cycle represents a vast and delicate balance. It seems clear that the safest option is for fossil fuels to stay deep underground where nature stored them millions of years ago.

Caroline Alden is a graduate student at the Institute of Arctic and Alpine Research in the Department of Geology at the University of Colorado at Boulder.

more »

Wind Science, Energy, and Growing Prevalence

Wind is the kinetic energy of molecules in the air. Wind has powered ships and mills for centuries or longer.

Modern windmills convert the wind into rotational energy by allowing the air molecules to bombard the blades, turning them. The blades are connected to turbines, which generate electricity from that rotational energy.

Wind energy is one of the cleanest forms of energy available because it doesn’t require a fuel or produce greenhouse gas or other bi-products, outside of those from production and maintenance of equipment and transmission.

Wind turbines themselves take up only a small area compared to their generating potential, making it possible to install them on agricultural, forest, or grazing lands.

RAPID GROWTH

In just ten years, wind power in the United States grew more than ten-fold, from just over 2,000 megawatts in 1999 to more than 34,000 megawatts in 2009, when wind accounted for 9 percent of renewable energy produced in the country and more than geothermal and solar combined.

Here’s an animated map of wind development from 2000 to 2010.

Texas, Iowa, and Minnesota had the greatest wind capacity in 2010. Additionally, at least 27 other states used wind to generate electricity that year.

DRAWBACKS TO WIND ENERGY

Wind is an intermittent resource, meaning that the windmills can’t continuously and predictably produce energy. They only work when the wind blows, and they can only work as hard as the wind is blowing at that time.

Research is ongoing into predicting what regions of the country have significant wind resources suitable for wind development, a process that requires computer programming and meteorological knowledge.

Furthermore, public and private researchers are working to produce better models of wind on an hourly, daily, and seasonal basis to make it easier for wind energy producers to forecast their output and sell it ahead of time.

Another major hurdle to wind power is that it is expensive compared with fossil fuel-based electricity. Modern windmills cost a lot to design and build, especially as they have to be strong enough to endure extreme weather, even though they will mostly operate in moderate weather. That makes competing with other energy sources difficult without government intervention.

Some people don’t like the way windmills look, and windmills can also kill bats and birds, though newer designs have slower and less deadly blades. A 2010 study published in the Journal of Ornithology estimated that windmills kill around 440,000 birds every year. However, the same study showed that house cats kill more than 1,000 times that number, as many as 500 billion per year.

SOURCES
more »

The Hydrogen Economy, Hydrogen Sources, and the Science Behind These

The hydrogen-filled Hindenburg in 1936 or 1937. Photo from DeGolyer Library at Southern Methodist University.

THE HYDROGEN ECONOMY

The hydrogen economy is a hypothetical future in which energy can be bought, sold, stored, and transported in a currency of hydrogen, much like today’s energy is often exchanged in electricity. Because hydrogen doesn’t need to be attached to the electricity grid, it can be used in forms of transportation like buses and cars.

The end-user of the hydrogen, for example an automobile driver, doesn’t experience significant pollution beyond the formation of water from burning the hydrogen.

For more details about the hydrogen economy see here.

Hydrogen, a gas, isn’t a fuel like gasoline or coal; hydrogen is a way to store and transport energy made from other fuels, like a battery or electricity. Unlike fossil fuels, pure hydrogen isn’t stable, so forming hydrogen in the first place requires energy and produces carbon dioxide, and storing hydrogen involves special considerations because this light gas is very flammable and also quickens rust and oxidation in pipelines and storage containers.

HOW HYDROGEN IS DIFFERENT FROM FOSSIL FUELS

Allowing hydrogen (a gas) to burn in the presence of oxygen releases that stored energy in the form of heat. Hydrogen can also be reacted in a fuel cell to produce electricity. In either case, electricity or heat can then be used to power cars or any number of other devices. Gasoline, biofuels, wood, and other carbon-based fuels all produce carbon dioxide when they are burned, and rising carbon dioxide levels are widely implicated in climate change. Burning hydrogen produces energy, water and a few trace compounds, but it doesn’t produce carbon dioxide.

2 H2 (hydrogen gas) + O2 (oxygen gas) = 2 H2O (water vapor) + energy

It’s unclear what widespread emission of water vapor could do. According to recent published estimates, atmospheric water vapor is responsible for 75 percent of the greenhouse effect. However, water vapor can condense, and it’s naturally-occurring in the atmosphere. It is much easier to trap and transform to liquid than the carbon dioxide normally emitted by burning gasoline. Carbon dioxide won’t form a liquid at atmospheric temperatures and will solidify into dry ice only below -108.4 Fahrenheit, so proponents say it can be easier to trap the vapor in hydrogen-powered machines.

If the energy used to generate and purify and store and ship hydrogen doesn’t require emitting greenhouse gases or toxics, proponents argue that hydrogen is a clean alternative.

SOURCES OF HYDROGEN: THE UNFORTUNATE REALITY TODAY

Hydrogen, not carbon, is the most prevalent atom in the human body. There are two hydrogen atoms in every water molecule, and as many as hundreds of hydrogen atoms on the basic building blocks of life, from DNA to plant fibers. Nonetheless, harvesting the hydrogen atoms out of any of these structures to make hydrogen fuel isn’t easy because hydrogen likes to be bonded to carbon or oxygen; it doesn’t like to be elemental gas.

To produce pure hydrogen today, industries use primary fuel source like petroleum, natural gas, coal, or biomass. Through chemical processing, the hydrogen atoms are stripped from the fuel by way of an input of energy from electricity (more than 80 percent of which comes from fossil fuels in the United States). Furthermore, the leftover material from the stripping is carbon dioxide, the same carbon dioxide that would have been produced if the fuel was burned in an engine.

The reactions for various fuel to hydrogen conversions can be found on the U.S. Department of Energy website here.

Hydrogen can also be produced, at great energy loss, through the electrolysis of water: using electricity, water is divided into its constituents, hydrogen and oxygen. However, water electrolysis is the least carbon-neutral hydrogen production method, and it is very expensive ($3 to $6 per kilogram instead of a little more than $1 in the case of using coal for hydrogen), according to the U.S. Energy Information Administration. All hydrogen production methods result in a net energy loss.

 

 

more »

The Global Energy Mix and Policies

 On this page, you can find energy information about the world’s most populated countries: China, India, the United States, Indonesia, Brazil, Pakistan, Bangladesh, Nigeria, Russia, and Japan. For fossil fuel information about any country, see online tables here.

A nation’s sources of energy hinge on so many factors, from what’s naturally available to geography, political history, and relative wealth.

Even though energy demand is increasing rapidly across the globe, the International Energy Agency estimates a fifth of the world population lacks access to electricity, and a whopping 40 percent of people still use traditional biomass – like wood chips – for cooking. People who live without the energy infrastructure of electricity depend on portable petroleum fuels, manure and methane gas produced from manure, wood, grass, and agricultural wastes. Because these sources of energy are informal, it’s difficult to track and include them in statistics.

World electricity and energy demands are escalating. Countries are expanding energy investment to non-fossil sources like biofuels, wind, solar, and geothermal. At the same time, they are competing to secure access to coal, natural gas, and petroleum both at home and abroad.

 

Nowhere has rapid energy growth been more conspicuous than in the world’s most populated country, China. While most countries saw moderate energy growth in the same period, this Asian nation doubled energy use in less than a decade – see graph – and surpassed the United States in total energy use in 2009, according to International Energy Agency estimates. Until 2009, the United States lead the world in total energy consumption, though not per person consumption, for decades. For a list of the top 30 countries by total energy consumption see here.

Meanwhile, less than 42 percent of people in Africa had electricity at home in 2009. South Asians seemed better off than Africans that year, at 62 percent, but the real story is much more diverse. Nearly 100 percent of Chinese had access to electricity, while in Burma, only 13 percent had access. Worldwide almost 78 percent of people had access to electricity in 2009, according to the International Energy Agency.

 

ENERGY IN THE WORLD’S MOST POPULATED COUNTRIES

 

CHINA (Pop. 1.3 billion)

Between 2008 and 2035, China may triple its electricity demand, adding power plant capacity equal to the current U.S. total, the International Energy Agency projects in one scenario of the 2010 World Energy Outlook.

China is the world’s most populated country and also the world’s largest energy consumer. China gets most of its energy from coal, 71 percent in 2008. China is also the world’s biggest coal producer but only third, behind the United States and Russia, in coal reserves.

In 2008, China generated another 19 percent of its energy from oil, which it imported from all over the world, more than half came collectively from Saudi Arabia, Angola, Iran, Oman, Russia, and Sudan. China used to export its oil, but by 2009 automobile investment was expanded by so much, the country became the second largest oil importer (United States is first).

China is in hot pursuit of securing as much oil as possible, as the nation’s reliance on imported oil is growing far more rapidly than its oil production. Several powerful, national oil companies provide the domestic oil, both from on and off-shore sources. Furthermore, China has purchased oil assets in the Middle East, Canada, and Latin America, and it also conducts oil-for-loan exchanges with other countries, $90 billion worth since 2009, according to the U.S. Energy Information Administration.

Only a small proportion of China’s energy comes natural gas, produced domestically and imported in liquified form, but that may change as prices lower and liquified natural gas terminals are constructed.

China is the world’s biggest user of hydroelectric power, which made up 6 percent of energy and 16 percent of electricity in 2009. The country’s Three Gorges Dam, the world’s largest hydroelectric project, is expected to begin operating in 2012. Nuclear power accounts for only 1 percent of total consumption. However, China’s government predicts it will have seven times its current nuclear capacity by 2020.

A homemade oven. West Bengal, India, 2009.

Detailed data on energy in China can be found here.

 

 

 

 

 

 

INDIA (1.2 billion)

India is the world’s largest democracy. Though India’s population is close to that of China’s, it is only the world’s fifth largest energy user, behind the United States, China, Russia, and Japan.

Like China, India’s electricity comes mostly from coal. However, India doesn’t have enough electricity for everyone, and only 65 percent of the population has access to electricity.

Instead, many Indian use fuels at home for lighting and cooking. A 2004-2005 survey by the government found more than 40 percent of rural Indians used kerosene instead of electricity for home lighting. The same survey showed that for cooking, 74 percent of Indians used firewood and wood chips, 8.6 percent used liquified petroleum gas, 9 percent used dung cakes, and 1.3 percent used kerosene.

India produces oil domestically, but like China, the rate of India’s increasing oil consumption far outstrips its production. India therefore has to import oil; in 2009 its most significant sources were Saudi Arabia, Iran, Kuwait, Iraq, the United Arab Emirates, Nigeria, Angola, and Venezuela, in descending order.

India doesn’t have the electricity capacity to serve its population but aims to add many thousands of megawatts in the near future.

Like China, India has nuclear power, with 14 nuclear plants in operation and another 10 in planning, the reactors purchased from France and Russia.

 

UNITED STATES (300 million)

Until China recently outpaced it, the United States was the biggest energy consumer in the world, though per capita use isn’t the highest but in the same range as several developed countries worldwide and less than the per capita use in Canada. The United States relies on petroleum, coal, and natural gas, as well as a small part nuclear, hydroelectric, and various non-fossil sources. The Unites States has significant oil, coal, and natural gas reserves, as well as the potential for significant investment in solar, off and on-shore wind, and biofuels.

The mix of fuels that provide electricity varies widely from region to region. Find a map of fuel mix by U.S. region from the Edison Electric Insitute here.

For more U.S. information:

-Fossil fuel use in the United States, go here.
-U.S. greenhouse gas emissions and energy here.
-U.S. sources of energy, see here.

 

INDONESIA (250 million)

Indonesia is an archipelago of more than 17,000 islands — 6,000 are inhabited — and it is home to 76 active volcanoes and a significant undeveloped geothermal capacity, estimated at 28 gigawatts, about as much total electricity capacity as Indonesia had in 2008.

Indonesia’s energy demand is growing rapidly, split between coal, natural gas, and petroleum sources. Traditional sources of energy like wood and agricultural waste continue to be used, particularly in rural areas and remote islands, and the International Energy Administration estimates these fuels provide about a quarter of the country’s energy.

Indonesia exports coal and natural gas. In the past, the country also exported more oil than it used, but as of 2004 that balance changed. By 2009, the country suspended its membership in the Organization of Petroleum Exporting Countries (OPEC) because it was using so much of its own oil.

 

BRAZIL (200 million)

Tropical Brazil is the largest country in South America both in area and population, and it is the third largest user of energy in the Americas, after the United States and Canada.

Made from sugar cane, Brazil’s ethanol production is the world’s second largest, after the United States, which makes ethanol from corn.

Brazil produces almost as much petroleum as Venezuela and produces slightly more fuel than it consumes.

While Brazil depends on oil for other energy applications like transportation, the country gets an astounding 84 percent of electricity from hydroelectric dams. Brazil also has two nuclear power plants.

PAKISTAN (190 million)

Pakistan has limited access to electricity and energy sources, and its rural population still relies on gathered fuels like wood for heating and cooking.

In 2009 around 60 percent of the population had access to electricity, far better than its neighbor Afghanistan, at just 15 percent. Nonetheless, even with access, most of the population can’t rely on electricity unless they are wealthy enough to own generators. Pakistan suffers from lengthy blackouts, even in its cities, in part because of poor transmission infrastructure and widespread electricity theft. The situation is also aggravated by lack of capacity planning, insufficient fuel, and irregularities in water supply for hydroelectric.

In 2010, angry citizens protested violently after lengthy blackouts — as long as 18 hours according to Reuters — plagued the country. That summer, Pakistan has nowhere near enough electricity for its peak needs, which were roughly 25 percent more than its total production capacity. The widespread blackouts crippled the country’s textile industry, its biggest source of exports, and some reports suggest that hundreds of factories were shuttered as a result of sporadic power.

Meanwhile, several proposals for gas pipelines through Pakistan have yet to get solidified, including one from Iran to Afghanistan (which is opposed by the United States).

 

BANGLADESH (160 million)

Like nearby Pakistan and India, with which it shares cultural and political histories, Bangladesh also suffers from electricity shortages. Only 41 percent of Bangladeshis had access to electricity in 2009, according to the International Energy Administration.

Most of the electricity in this delta nation is generated from natural gas, with smaller amounts each from oil, coal, and hydroelectric sources. More than 30 percent of the country’s energy comes from biomass, agricultural wastes, and other combustible, renewable materials.

In 2011, Bangladesh signed a contract with oil company ConocoPhillips, allowing off-shore drilling for natural gas, despite internal protests that insisted Bangladesh should keep more of the gas for its own. The agreement gives 20 percent to Bangladesh.

 

NIGERIA (160 million)

Nigeria is Africa’s most populous country, and it is world famous for its oil, most of which is exported for sale by huge foreign oil companies like Royal Dutch Shell, ExxonMobil, Chevron, ConocoPhillips, Petrobras, and Statoil. Roughly 65 percent of government revenue comes from the oil sector, and around 40 percent its oil exports are sent to the United States. Nigeria also holds the largest natural gas reserves in Africa.

Extensive oil development has wreaked havoc on Nigeria’s ecology. Oil spills have polluted Nigeria’s water, affecting both fishing and agriculture. Much of Nigeria’s natural gas is flared rather than being collected and sold for fuel. Flaring involves burning off naturally-occurring gases during petroleum drilling and refining, resulting in  environmental degradation, greenhouse gas emissions and loss of revenue.

Even though Nigeria is fossil fuel-rich, only 47 percent of the population have access to electricity, and less than a fifth of energy in that country came from petroleum and natural gas in 2007, reflecting the widespread use of more traditional fuels like wood. Nigeria only used 13 percent of petroleum it produced in 2009.

 

RUSSIA (140 million)

Russia has significant wealth in fossil fuels, including the largest natural gas reserves and the second largest coal reserves, after the United States. In 2009, Russia produced more oil even than Saudi Arabia, mostly from Western Siberia. In 2009, Russia exported far more oil than it used, and 81 percent of its exports went to Europe, notably the Netherlands and Germany.

Russia is also the third largest consumer of energy in the world.

The country has a well-developed pipeline system to transport oil from remote regions, a system which is almost entirely controlled by a single state-run company, Transneft.

Like Nigeria, Russia flares gas in the process of drilling and refining oil, and in 2008 Russia flared more gas than any other country in the world, 1,432 Bcf of natural gas, more than double Nigeria’s output and equivalent to the annual greenhouse gas emissions for 1.4 million passenger cars, according the calculator on the U.S. Environmental Protection Agency website and data from the U.S. Energy Information Administration.

Russia operates 31 nuclear reactors, half of which employ a similar design to the ill-fated Chernobyl plant in the Ukraine.

 

JAPAN (130 million)

Japan doesn’t have significant fossil fuel resources, one reason that much of its electricity industry relies on nuclear power. It is the world’s third largest user of nuclear power.

Japan is the world’s third larger oil consumer, and it does produce some oil domestically. However, it also imports a lot of oil and natural gas, the later in the form of liquified natural gas, or LNG. Almost half of its energy came from imported oil in 2009, and just 16 percent of Japanese energy came from a domestic source.

Japan also invests heavily in foreign oil, including in the United Arab Emirates, the Congo, Algeria, Russia, Australia, Papua New Guinea, Brazil, Canada, the United Kingdom, Vietnam, and Indonesia, to name a few.

As of June 2011, Japan is still recovering from a massive earthquake and tsunami that devastated its northeast coast on March 11, 2011, forcing the shutdown of several nuclear reactors as well as damaging refineries, oil and gas generators, and electricity transmission infrastructure.

Japan imports most of its oil from the Middle East: Saudi Arabia, Iran, Kuwait, the United Arab Emirates, and Qatar together supplied 77 percent of imports in 2009.

more »

Major sources of energy/their advantages and disadvantages

There is no easy answer to what is the best source of energy or electricity. Is the priority reliability, affordability, the economy, international human rights, limiting greenhouse gas emissions, preserving environmental resources, or human health?

x

It’s undeniable that today — whether we like it or not — humans worldwide are overwhelmingly dependent on fossil fuels: coal, oil, and natural gas. Everything eaten, worn, lived in, and bought is tied to availability of fossil fuels. Even if 100 percent of politicians were determined to stop using them today, society has neither the electricity grid nor the vehicular and industrial technology to sustain the current American lifestyle on non-fossil sources of energy. Yet.

When comparing sources of energy, it’s easy to forget how universal fossil fuels are. These sources continue to dominate for reasons that are difficult to measure, like political influence, advertising clout, and control over energy infrastructure. Other sources have disadvantages purely because they don’t fit in as well.

Volume brings another difficulty in comparing sources of energy. There is so much more fossil energy, and it’s been used for a long time, so we know a lot more about its hazards and benefits. More modern technologies are harder to quantify. Some are renewable but still pollute (biofuels), some are very clean except in accidents or waste disposal (nuclear). Most electricity sources (renewable or not) use steam turbines, and all the water to make steam has to come from somewhere, but how important should that factor be?



Clicking the graphic above will give an abbreviated chart comparing sources line by line, but that doesn’t provide anywhere close to the whole story.

Each of the following topics compares the major sources of energy  through a different lens. Though environmental and local issues may seem the most important to those of us who don’t own power plants or utility companies, the cost of energy drives which sources are actually in place today and which sources will see investment tomorrow.

 

 

 

 

 

 

 

 

 

 

 


Source: U.S. Energy Information Administration

more »

The Connections Between Greenhouse Gas Emissions and Energy

Most of the greenhouse gas emitted through human activity comes from the production of energy.

This group of gases is thought to contribute to global climate change, long-term shifts in weather partly due to the tendency of these gases to trap energy, in the form of electromagnetic radiation from the sun, that would otherwise have been reflected back out into space. For more about the relationship between the climate and greenhouse gases, go here.

Noteworthy greenhouse gases  are carbon dioxide, nitrous oxide, methane, hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF6).

Energy creation results in such a high level of greenhouse gas because the vast majority of energy we use — regardless of what country we live in — comes from burning something, usually coal, petroleum fuels, natural gas, or wood. More than 80 percent of U.S. energy in 2009 came from the combustion of fossil fuels.  Go here for more information about how combustion works.

WE’VE BURNED THINGS FOR EONS, WHY IS IT DIFFERENT NOW?

Plants and some types of microscopic organisms take carbon dioxide gas out of the air and turn it back into solid, carbon-based materials like plant fibers, using the energy of sunlight. The basis for all of our fuels, even the fossil fuels, comes from exploiting the fact that organisms convert  light energy into chemical energy, a potential energy source inside the plant or organism’s cells, whether the energy was converted in the last few decades (wood, biodiesel, ethanol) or millions of years ago (fossil fuels). Today, however, organisms don’t have the capacity to capture anywhere near as much of the greenhouse gas carbon dioxide as we produce, partly because we are burning fuels produced over millions of years.

EMISSIONS ARE A WORLDWIDE PHENOMENON

The United States produces more greenhouse gas each year per person than most other countries. However, even if we stopped producing any carbon dioxide at all, which is unlikely, the world would still keep producing 80 percent of its former output. Other regions produce just as much as we do, particularly Europe and China.

Furthermore, instead of holding steady at a particular emission rate, every year we use more energy and therefore emit more greenhouse gas. For a graph of atmospheric carbon dioxide by year, go here.

When we talk about energy-related emissions, we don’t only mean electricity. Energy involves burning oil and natural gas for heating, burning gasoline, diesel, and jet fuels for transportation. Transportation accounted for just over a third of all carbon dioxide emissions in 2009, electricity was almost 40 percent and residential, commercial, and industrial production, excluding electricity, made up roughly 26 percent.

Some greenhouse gases are thought to alter the climate more than others. Nitrous oxide is a much smaller percent of the gas mix than carbon dioxide, but for its weight it has a much stronger heat-trapping capability.

For more information go to The connection between greenhouse gases, climate change, and global warming.

Each year what proportion of emissions are man-made are carefully tracked by several agencies nationally and internationally, including the National Oceanic and Atmospheric Administration, the National Weather Service, and the National Aeronautics and Space Administration.

Sources:

U.S. Geological Survey
U.S. Energy Information Administration

U.S. Environmental Protection Agency
U.S. National Oceanic and Atmospheric Administration
CIA World Fact Book
World Energy Council
National Renewable Energy Laboratory
Emissions of Greenhouse Gases in the United States 2009: Independent Statistics & Analysis. U.S. Energy Information Administration, Department of Energy. March 2011.

more »

The Connection Between Greenhouse Gases, Climate Change & Global Warming


 

WHAT IS THE DIFFERENCE BETWEEN CLIMATE CHANGE AND GLOBAL WARMING?

Climate change is the shift in long-term, global weather patterns due to human action; it’s not exclusive to warming or cooling.

Climate change includes any change resulting from different factors, like deforestation or an increase in greenhouse gases. Global warming is one type of climate change, and it refers to the increasing temperature of the surface of Earth. According to NASA, the term global warming gained popular use after geochemist Wallace Broecker published a 1975 paper titled Climatic Change: Are We on the Brink of a Pronounced Global Warming?

Since 1880, the average surface temperature of the Earth has increased by roughly 0.9 degrees Fahrenheit, but the rate it’s increasing is faster than that, depending on which region you live in. If you’re closer to the equator, temperatures are increasing more slowly. The fastest increase in temperatures in the United States is in Alaska, where average temperatures have been increases by more than 3 degrees Fahrenheit per century. For a graph of average global temperatures by year, see the NASA website here.

 

HOW GREENHOUSE GASES RELATE TO CLIMATE CHANGE

Greenhouse gases are those thought to contribute to the greenhouse effect, an overall warming of the Earth as atmospheric gases trap electromagnetic radiation from the sun that would otherwise have been reflected back out into space.

Noteworthy greenhouse gases are methane, nitrous oxide, carbon dioxide, hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF6). These gases are thought to affect the climate directly and indirectly, even though they constitute only a small fraction of the blanket of gases that make up the atmosphere.

Currently, the composition of the atmosphere is mostly nitrogen and oxygen, with just 0.033 percent carbon dioxide and all other gases accounting for even less.

 

WHICH GASES CONTRIBUTE THE MOST?


According to 2010 models cited by NASA, 20 percent of the greenhouse effect is attributed directly to carbon dioxide and 5 percent to all other greenhouse gases. The remaining 75 percent of the greenhouse effect is thought to be due to water vapor and clouds, which are naturally-occurring. However, even though carbon dioxide and the other greenhouse gases are such a small percentage of the total gas in the atmosphere, they affect when, where and how clouds form, so greenhouse gases have some relevance when it comes to 100 percent of the greenhouse effect. Carbon dioxide is thought to modulate the overall climate, like a atmospheric thermostat.

Some greenhouse gases are produced in natural processes, like forest fires, animal manure and respiration, or volcanic eruptions. However, the majority of new greenhouse gases are produced from industrial processes and energy production.

The four largest human sources of U.S. greenhouse gases in 2009 were energy, non-fuel use of fossil fuels, natural gas production, and cement manufacture, in descending order. Non-fuel, greenhouse gas-producing applications of fuels include industrial production like asphalt, lubricants, waxes and other . Emissions related to cement manufacture happen when limestone (calcium carbonate) is reacted with silica to make clinker, the lumps ground to make cement. ( Emissions of Greenhouse Gases in the United States 2009: Independent Statistics & Analysis.)

more »

Energy Efficiency, Principles of Consumption, and Conservation

A blower-door test.

Transportation efficiency
Calculating home energy
Lighting efficiency
Heating and Cooling

 

 

When trying to lower your energy use, a good place to start is getting a picture of the many ways you use energy now.

 

 

HOW MUCH ENERGY DO I USE?

An average American uses more than four times as much energy per year than the global average, 308 million British thermal units (Btu) annually, compared to 73 million Btu per person per year globally,according to recent U.S. government estimates. That guess doesn’t account for foreigners’ use of gathered fuels like wood or manure. However, it also doesn’t include the foreign energy used to source, assemble, and ship an endless profusion of products to the United States from other countries, like China.

The most straightforward uses that you can measure and control are probably in the home and through transportation. Every year, the average car in the United States is driven 12,300 miles and consumes about 67.8 million Btu worth of fuel. On average, Americans use more energy in homes than for transport.  The average household uses less (around 41 million Btu worth of electricity). However, to use electricity at home, we have to generate an additional 90 million Btu of primary energy at the power plant, according to the U.S. Energy Information Administration. What is a Btu?

 

THAT’S ALL AVERAGE. HOW MUCH DO I USE?

Untangling the individual’s footprint comes with unrelenting complexities. Perhaps you live in an apartment in a big city and commute to work on the train, plug in your phone and computer at work, eat out every day, shower at a gym, and only come home to sleep. Maybe you travel for work, and your employer pays the expenses. You may pay almost nothing for energy directly. Yet, you are participating in energy use through your work, transportation, food, clothes, water, air travel, and electronic devices.

It’s also difficult to calculate how much energy is used up in buying new things. If you replace your car every two years, or you have a large home that you’re constantly remodeling, chances are your true energy footprint is much larger than you will be able to calculate.

The good news is you can calculate some aspects of your energy use and reduce it. And even if you plug in at work, it’s quite possible to make a decent ballpark estimate of how much energy that takes, too.

 

TRANSPORTATION EFFICIENCY

As a driving culture with access to cheap fuels — relative to our incomes — Americans use a lot of energy getting around. Transportation of goods and people accounted for almost a third of greenhouse gas emissions in 2009, according to the U.S. Energy Information Administration.

Reducing energy use in transportation is guaranteed by replacing car, truck, or motorcycle trips with biking or walking. For a normal healthy adult, walking a mile or two daily should be well within reach. Biking is a faster option, but it’s often considered a child’s transportation method in the United States. In countries like the Netherlands, it’s ordinary to see anyone on a bike, from babies in handlebar seats to well-groomed professionals.

Nonetheless, social customs, transportation infrastructure, suburban development, weather, and promotion of driving over other forms of transportation make it inconvenient and sometimes impossible to change Americans’ driving habits, at least without changing jobs or moving to a new city. A 2005 ABC News/Time magazine/Washington Post poll found that only 4 percent of 1,203 Americans used public transportation to get to work.

Even if driving is a must, driving efficiency can be improved. More efficient vehicles are available, like hybrids and some electric vehicles. Fuel economy can be improved by better car design and better driving. There’s also car-sharing and carpooling.

Analyzing, grouping, and prioritizing destinations can cut down on unnecessary trips. Yes, getting to work is mandatory perhaps, but a whopping 85 percent of car trips are for shopping, errands, and social or recreational reasons, according to a 2001-2002 government survey.

Other alternatives include public transit, ridesharing, and smaller transportation modes like skateboards, scooters, Segways and even electric bikes.

In China, the low-speed electric bicycle is extremely popular and far more efficient than driving or even taking the bus. It’s a regular pedal bike with a rechargeable battery that boosts the pedaler’s power but doesn’t travel faster than about 12.4 miles per hour. Somewhat heavier than standard bikes, electric bikes can still be pedaled without power on the flat or downhill, and the battery can help the rider stay sweat-free and comfortable on the uphill climb.

 

HOME ENERGY EFFICIENCY

Estimating home energy use is getting easier now that utilities have installed smart meters that display electricity demand moment-to-moment. Depending on the utility that supplies your power, if you have a smart meter, you may already be able to log in online and track your hour-by-hour power use on any particular day, compare weekdays to weekends, or see if the house-sitter blasted the air conditioning. You can see how much electricity your home draws right now, and you can turn on and off appliances to see how each one contributes.

If you don’t have a smart meter, to calculate the energy that individual items in your home use, you need to look up how many watts each device — televisions, refrigerators, computers, routers, lights, electric air and water heaters — uses. That nameplate wattage is usually printed on the device.

Some sample nameplate wattages (watts):

Clock radio: 10
Coffeemaker: 10
Dishwasher: 1200-2400
Ceiling fan: 65-175
Space heater: 750-1500
Computer: 200-300 (awake), 20-60 asleep
Laptop: 50
Refrigerator: 725

Weekly energy per device = wattage x hours it’s “ON” per week

For devices that cycle on and off, like refrigerators and air conditioners, you’ll divide the resulting number by three.

You’ll also want to examine how much natural gas, propane, or other fuels you use for heating and cooling space, heating water, and cooking. While electric devices tend to be more efficient than gas-powered devices in your home, electric devices actually tend to use more energy overall because of loss of efficiency when the electricity was generated and transmitted to your home.

If you’re in the market for replacing you refrigerator or other appliance, and want to find out more about efficient options, a good resource for information is the Energy Star program.

Another detailed resource for tracking your energy-related emissions of greenhouse gas is the Home Energy Saver, built by the U.S. Department of Energy and Lawrence Berkeley Laboratory.

Know that devices don’t precisely use what their nameplate wattage says. Various factors affect how much energy something uses. For example, using the maximum brightness setting on a laptop computer will require more energy. Air conditioners will require much more energy to operate in very hot weather not only because it’s hotter outside but because the refrigerant becomes less efficient as it gets warmer, particularly if the refrigerant gets into the high nineties Fahrenheit. See below for more about heating and cooling.

 

WHAT IS THE DIFFERENCE BETWEEN EFFICIENCY AND CONSERVATION

You can improve your efficiency by replacing appliances and redoing construction, but you can also conserve energy by using less demanding settings, adjusting the thermostat, and turning items like computers and televisions off when they’re unused.

 

LIGHTING

Unlike the days of candles and whale oil lamps, today we have many electrical lighting options. Our most popular, the standard 100 watt bulb, is being phased out, in part due to Clean Energy Act signed into law by President George W. Bush in 2007.  The maximum wattage incandescent bulb allowed will be 29 watts by 2014, down 70 percent from pre-2011 levels.

Instead, that type of bulb will be replaced by lower wattage incandescent bulbs, as well as compact fluorescent bulbs and even light-emitting diodes.

We can save lighting energy by

1. Turning off unused lights

2. Changing the type of light bulbs we use (see chart)

3. Changing the lighting plan, including adding natural light in the form of windows and skylights and solar tubes.

For more information about design, see the Energy Savers website.

Light can be measured in lumens. A 100 watt incandescent light bulb gives off around 1750 lumens.

The standard light bulb has a tungsten filament that exhibits incandescence when electric current travels through it. The filament burns out over time. The bulb keeps the filament in a special gas atmosphere like argon, instead of being exposed to regular air. Tungsten halogen bulbs operate somewhat similarly, with an incandescent filament, but the bulb contains halogen gas, which helps keep the filament from burning out as quickly.

Compact fluorescent bulbs, the sometimes spiral-looking bulbs, fluoresce instead of incandesce. Electric current travels through argon gas and a small amount of mercury vapor, which emit ultraviolet light. That light, in turn, excites a phosphor (fluorescent) coating on the inside of the bulb, which then emits visible light. So called CFLs are far more efficient and have much longer lifetimes. They do, however, contain a small amount of toxic mercury vapor and shouldn’t be thrown into the trash.

LEDs are also much more efficient than incandescent bulbs and don’t emit mercury if they’re broken. This technology is  sometimes called Solid State — even though the type of physics that the name is based upon has now changed to Condensed Matter. Extremely long-lived and very energy efficient, LED’s use around 20 percent of the energy of an incandescent for the same amount of light. However, they are far more expensive than similar fluorescent or incandescent options. For more about how LEDs work, go here.

 

HEATING AND COOLING EFFICIENCY

Heating and cooling take a lot of energy. Replacing heaters, refrigerators, and single-paned windows costs money. Ripping out walls to add insulation is scary and can become a huge project.

However, today, a wide array of tools and professionals are available to assess the efficiency of heating and cooling and put it into perspective with cost. Home efficiency experts can use infrared detectors to track where heat is lost, and they can use blower door tests to check how quickly air is being exchanged with the outdoors through holes and leaky ducts.

Blower door tests change the air pressure inside a building relative to the outside to measure how quickly the air pressure returns to normal. If you walks through a pressurized house during the test, you can also track where air is leaking.

Even without a professional, you can reassess your home energy use. For tips on do-it-yourself home energy assessment, try the U.S. Department of Energy’s Energy Savers website.

 

A FEW WAYS TO SAVE HEATING AND COOLING ENERGY

1. Repairing leaky ducts, an often neglected source of heat loss! Ducts are much easier to access than replacing insulation, and they often have holes and cracks, making them a major  source of cold air infiltration, and also indoor air pollution.  Leaks suck in cold, dirty crawl space air including asbestos, dirt, and volatile chemicals (paint thinners, pesticides) that we stow or spray under the house. For more about indoor air quality see the Environmental Protection Agency’s website here.

2. Improve insulation and weather stripping, and seal up cracks. Use curtains or blinds to trap heat in during the winter and block sun out during the summer.

3. Replace air conditioners and heaters with more efficient models.

4. If you live in a dry climate, open windows to vent your home in the evenings, keep windows closed and A/C on during the morning before its the hottest hour of the day. Resist cranking the A/C up during the hottest hours of the day when the coolant fluid is the least efficient.

5. Replace windows and doors with better rated ones. For more about how windows are rated see the National Fenestration Rating Council.

 

THE FUTURE

The invention of new electricity-dependent devices outstrips the speed that we are making our homes more efficient. Today, heating, refrigerators, and air conditioners are using less energy, but televisions, computers, and an ever-expanding selection of other electronics are demanding more. For more about electricity in the home see the Basics of Electricity and how energy moves through the home.

 

WHAT IS A BTU

A British thermal unit – almost always written Btu or BTU – is a measurement of thermal energy.  The scientific community usually uses the more manageable unit of the joule, which is a metric measurement of energy.  (A Btu is roughly 1,000 joules) A Btu is the English unit.

Fuels are often measured in Btu to show how much potential they have to heat water into steam or provide energy in other ways, like to engines. Steam turbines produce most of the electricity in the United States.

 

For more about the Smart Grid go to the Power Grid Technology section.

more »