The Connection Between Greenhouse Gases, Climate Change & Global Warming


 

WHAT IS THE DIFFERENCE BETWEEN CLIMATE CHANGE AND GLOBAL WARMING?

Climate change is the shift in long-term, global weather patterns due to human action; it’s not exclusive to warming or cooling.

Climate change includes any change resulting from different factors, like deforestation or an increase in greenhouse gases. Global warming is one type of climate change, and it refers to the increasing temperature of the surface of Earth. According to NASA, the term global warming gained popular use after geochemist Wallace Broecker published a 1975 paper titled Climatic Change: Are We on the Brink of a Pronounced Global Warming?

Since 1880, the average surface temperature of the Earth has increased by roughly 0.9 degrees Fahrenheit, but the rate it’s increasing is faster than that, depending on which region you live in. If you’re closer to the equator, temperatures are increasing more slowly. The fastest increase in temperatures in the United States is in Alaska, where average temperatures have been increases by more than 3 degrees Fahrenheit per century. For a graph of average global temperatures by year, see the NASA website here.

 

HOW GREENHOUSE GASES RELATE TO CLIMATE CHANGE

Greenhouse gases are those thought to contribute to the greenhouse effect, an overall warming of the Earth as atmospheric gases trap electromagnetic radiation from the sun that would otherwise have been reflected back out into space.

Noteworthy greenhouse gases are methane, nitrous oxide, carbon dioxide, hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF6). These gases are thought to affect the climate directly and indirectly, even though they constitute only a small fraction of the blanket of gases that make up the atmosphere.

Currently, the composition of the atmosphere is mostly nitrogen and oxygen, with just 0.033 percent carbon dioxide and all other gases accounting for even less.

 

WHICH GASES CONTRIBUTE THE MOST?


According to 2010 models cited by NASA, 20 percent of the greenhouse effect is attributed directly to carbon dioxide and 5 percent to all other greenhouse gases. The remaining 75 percent of the greenhouse effect is thought to be due to water vapor and clouds, which are naturally-occurring. However, even though carbon dioxide and the other greenhouse gases are such a small percentage of the total gas in the atmosphere, they affect when, where and how clouds form, so greenhouse gases have some relevance when it comes to 100 percent of the greenhouse effect. Carbon dioxide is thought to modulate the overall climate, like a atmospheric thermostat.

Some greenhouse gases are produced in natural processes, like forest fires, animal manure and respiration, or volcanic eruptions. However, the majority of new greenhouse gases are produced from industrial processes and energy production.

The four largest human sources of U.S. greenhouse gases in 2009 were energy, non-fuel use of fossil fuels, natural gas production, and cement manufacture, in descending order. Non-fuel, greenhouse gas-producing applications of fuels include industrial production like asphalt, lubricants, waxes and other . Emissions related to cement manufacture happen when limestone (calcium carbonate) is reacted with silica to make clinker, the lumps ground to make cement. ( Emissions of Greenhouse Gases in the United States 2009: Independent Statistics & Analysis.)

more »

Water Depends on Energy, Or Is It The Other Way Around?

The United States took more than 400 billion gallons of water out of the ground, lakes, rivers, and reservoirs daily in 2005.  (more…)

more »

Energy Efficiency, Principles of Consumption, and Conservation

A blower-door test.

Transportation efficiency
Calculating home energy
Lighting efficiency
Heating and Cooling

 

 

When trying to lower your energy use, a good place to start is getting a picture of the many ways you use energy now.

 

 

HOW MUCH ENERGY DO I USE?

An average American uses more than four times as much energy per year than the global average, 308 million British thermal units (Btu) annually, compared to 73 million Btu per person per year globally,according to recent U.S. government estimates. That guess doesn’t account for foreigners’ use of gathered fuels like wood or manure. However, it also doesn’t include the foreign energy used to source, assemble, and ship an endless profusion of products to the United States from other countries, like China.

The most straightforward uses that you can measure and control are probably in the home and through transportation. Every year, the average car in the United States is driven 12,300 miles and consumes about 67.8 million Btu worth of fuel. On average, Americans use more energy in homes than for transport.  The average household uses less (around 41 million Btu worth of electricity). However, to use electricity at home, we have to generate an additional 90 million Btu of primary energy at the power plant, according to the U.S. Energy Information Administration. What is a Btu?

 

THAT’S ALL AVERAGE. HOW MUCH DO I USE?

Untangling the individual’s footprint comes with unrelenting complexities. Perhaps you live in an apartment in a big city and commute to work on the train, plug in your phone and computer at work, eat out every day, shower at a gym, and only come home to sleep. Maybe you travel for work, and your employer pays the expenses. You may pay almost nothing for energy directly. Yet, you are participating in energy use through your work, transportation, food, clothes, water, air travel, and electronic devices.

It’s also difficult to calculate how much energy is used up in buying new things. If you replace your car every two years, or you have a large home that you’re constantly remodeling, chances are your true energy footprint is much larger than you will be able to calculate.

The good news is you can calculate some aspects of your energy use and reduce it. And even if you plug in at work, it’s quite possible to make a decent ballpark estimate of how much energy that takes, too.

 

TRANSPORTATION EFFICIENCY

As a driving culture with access to cheap fuels — relative to our incomes — Americans use a lot of energy getting around. Transportation of goods and people accounted for almost a third of greenhouse gas emissions in 2009, according to the U.S. Energy Information Administration.

Reducing energy use in transportation is guaranteed by replacing car, truck, or motorcycle trips with biking or walking. For a normal healthy adult, walking a mile or two daily should be well within reach. Biking is a faster option, but it’s often considered a child’s transportation method in the United States. In countries like the Netherlands, it’s ordinary to see anyone on a bike, from babies in handlebar seats to well-groomed professionals.

Nonetheless, social customs, transportation infrastructure, suburban development, weather, and promotion of driving over other forms of transportation make it inconvenient and sometimes impossible to change Americans’ driving habits, at least without changing jobs or moving to a new city. A 2005 ABC News/Time magazine/Washington Post poll found that only 4 percent of 1,203 Americans used public transportation to get to work.

Even if driving is a must, driving efficiency can be improved. More efficient vehicles are available, like hybrids and some electric vehicles. Fuel economy can be improved by better car design and better driving. There’s also car-sharing and carpooling.

Analyzing, grouping, and prioritizing destinations can cut down on unnecessary trips. Yes, getting to work is mandatory perhaps, but a whopping 85 percent of car trips are for shopping, errands, and social or recreational reasons, according to a 2001-2002 government survey.

Other alternatives include public transit, ridesharing, and smaller transportation modes like skateboards, scooters, Segways and even electric bikes.

In China, the low-speed electric bicycle is extremely popular and far more efficient than driving or even taking the bus. It’s a regular pedal bike with a rechargeable battery that boosts the pedaler’s power but doesn’t travel faster than about 12.4 miles per hour. Somewhat heavier than standard bikes, electric bikes can still be pedaled without power on the flat or downhill, and the battery can help the rider stay sweat-free and comfortable on the uphill climb.

 

HOME ENERGY EFFICIENCY

Estimating home energy use is getting easier now that utilities have installed smart meters that display electricity demand moment-to-moment. Depending on the utility that supplies your power, if you have a smart meter, you may already be able to log in online and track your hour-by-hour power use on any particular day, compare weekdays to weekends, or see if the house-sitter blasted the air conditioning. You can see how much electricity your home draws right now, and you can turn on and off appliances to see how each one contributes.

If you don’t have a smart meter, to calculate the energy that individual items in your home use, you need to look up how many watts each device — televisions, refrigerators, computers, routers, lights, electric air and water heaters — uses. That nameplate wattage is usually printed on the device.

Some sample nameplate wattages (watts):

Clock radio: 10
Coffeemaker: 10
Dishwasher: 1200-2400
Ceiling fan: 65-175
Space heater: 750-1500
Computer: 200-300 (awake), 20-60 asleep
Laptop: 50
Refrigerator: 725

Weekly energy per device = wattage x hours it’s “ON” per week

For devices that cycle on and off, like refrigerators and air conditioners, you’ll divide the resulting number by three.

You’ll also want to examine how much natural gas, propane, or other fuels you use for heating and cooling space, heating water, and cooking. While electric devices tend to be more efficient than gas-powered devices in your home, electric devices actually tend to use more energy overall because of loss of efficiency when the electricity was generated and transmitted to your home.

If you’re in the market for replacing you refrigerator or other appliance, and want to find out more about efficient options, a good resource for information is the Energy Star program.

Another detailed resource for tracking your energy-related emissions of greenhouse gas is the Home Energy Saver, built by the U.S. Department of Energy and Lawrence Berkeley Laboratory.

Know that devices don’t precisely use what their nameplate wattage says. Various factors affect how much energy something uses. For example, using the maximum brightness setting on a laptop computer will require more energy. Air conditioners will require much more energy to operate in very hot weather not only because it’s hotter outside but because the refrigerant becomes less efficient as it gets warmer, particularly if the refrigerant gets into the high nineties Fahrenheit. See below for more about heating and cooling.

 

WHAT IS THE DIFFERENCE BETWEEN EFFICIENCY AND CONSERVATION

You can improve your efficiency by replacing appliances and redoing construction, but you can also conserve energy by using less demanding settings, adjusting the thermostat, and turning items like computers and televisions off when they’re unused.

 

LIGHTING

Unlike the days of candles and whale oil lamps, today we have many electrical lighting options. Our most popular, the standard 100 watt bulb, is being phased out, in part due to Clean Energy Act signed into law by President George W. Bush in 2007.  The maximum wattage incandescent bulb allowed will be 29 watts by 2014, down 70 percent from pre-2011 levels.

Instead, that type of bulb will be replaced by lower wattage incandescent bulbs, as well as compact fluorescent bulbs and even light-emitting diodes.

We can save lighting energy by

1. Turning off unused lights

2. Changing the type of light bulbs we use (see chart)

3. Changing the lighting plan, including adding natural light in the form of windows and skylights and solar tubes.

For more information about design, see the Energy Savers website.

Light can be measured in lumens. A 100 watt incandescent light bulb gives off around 1750 lumens.

The standard light bulb has a tungsten filament that exhibits incandescence when electric current travels through it. The filament burns out over time. The bulb keeps the filament in a special gas atmosphere like argon, instead of being exposed to regular air. Tungsten halogen bulbs operate somewhat similarly, with an incandescent filament, but the bulb contains halogen gas, which helps keep the filament from burning out as quickly.

Compact fluorescent bulbs, the sometimes spiral-looking bulbs, fluoresce instead of incandesce. Electric current travels through argon gas and a small amount of mercury vapor, which emit ultraviolet light. That light, in turn, excites a phosphor (fluorescent) coating on the inside of the bulb, which then emits visible light. So called CFLs are far more efficient and have much longer lifetimes. They do, however, contain a small amount of toxic mercury vapor and shouldn’t be thrown into the trash.

LEDs are also much more efficient than incandescent bulbs and don’t emit mercury if they’re broken. This technology is  sometimes called Solid State — even though the type of physics that the name is based upon has now changed to Condensed Matter. Extremely long-lived and very energy efficient, LED’s use around 20 percent of the energy of an incandescent for the same amount of light. However, they are far more expensive than similar fluorescent or incandescent options. For more about how LEDs work, go here.

 

HEATING AND COOLING EFFICIENCY

Heating and cooling take a lot of energy. Replacing heaters, refrigerators, and single-paned windows costs money. Ripping out walls to add insulation is scary and can become a huge project.

However, today, a wide array of tools and professionals are available to assess the efficiency of heating and cooling and put it into perspective with cost. Home efficiency experts can use infrared detectors to track where heat is lost, and they can use blower door tests to check how quickly air is being exchanged with the outdoors through holes and leaky ducts.

Blower door tests change the air pressure inside a building relative to the outside to measure how quickly the air pressure returns to normal. If you walks through a pressurized house during the test, you can also track where air is leaking.

Even without a professional, you can reassess your home energy use. For tips on do-it-yourself home energy assessment, try the U.S. Department of Energy’s Energy Savers website.

 

A FEW WAYS TO SAVE HEATING AND COOLING ENERGY

1. Repairing leaky ducts, an often neglected source of heat loss! Ducts are much easier to access than replacing insulation, and they often have holes and cracks, making them a major  source of cold air infiltration, and also indoor air pollution.  Leaks suck in cold, dirty crawl space air including asbestos, dirt, and volatile chemicals (paint thinners, pesticides) that we stow or spray under the house. For more about indoor air quality see the Environmental Protection Agency’s website here.

2. Improve insulation and weather stripping, and seal up cracks. Use curtains or blinds to trap heat in during the winter and block sun out during the summer.

3. Replace air conditioners and heaters with more efficient models.

4. If you live in a dry climate, open windows to vent your home in the evenings, keep windows closed and A/C on during the morning before its the hottest hour of the day. Resist cranking the A/C up during the hottest hours of the day when the coolant fluid is the least efficient.

5. Replace windows and doors with better rated ones. For more about how windows are rated see the National Fenestration Rating Council.

 

THE FUTURE

The invention of new electricity-dependent devices outstrips the speed that we are making our homes more efficient. Today, heating, refrigerators, and air conditioners are using less energy, but televisions, computers, and an ever-expanding selection of other electronics are demanding more. For more about electricity in the home see the Basics of Electricity and how energy moves through the home.

 

WHAT IS A BTU

A British thermal unit – almost always written Btu or BTU – is a measurement of thermal energy.  The scientific community usually uses the more manageable unit of the joule, which is a metric measurement of energy.  (A Btu is roughly 1,000 joules) A Btu is the English unit.

Fuels are often measured in Btu to show how much potential they have to heat water into steam or provide energy in other ways, like to engines. Steam turbines produce most of the electricity in the United States.

 

For more about the Smart Grid go to the Power Grid Technology section.

more »

Total U.S. Electric Output Per Week

This week (April 1 – April 7, 2012): 69,338 Gigawatt-hours
Change from this week last year: down 1.5%
This year (total of previous 52 weeks): 4,049,476 Gigawatt-hours

 

A Terawatt (1,000 Gigawatts) measures how much electricity is used at any single moment.
A Terawatt-hour (TWh) measures how much electricity was used over time.

Total U.S. Electric Output by Week

 

 

Weekly Electric Output is compiled from data collected through an online web data entry page from most of the country’s major, investor-owned utilities, municipalities, and Federal power agencies, accounting for roughly 75-80% of total electricity output. A multiplier is used to account for the other 3,000 small utilities that cannot be surveyed weekly.

more »

Groundwater, the Water Cycle, and Depletion

THE WATER CYCLE AND GROUNDWATER

Water is created and destroyed in natural chemical reactions within plants and animals. However, most water sticks around. It changes phases through the water cycle; it can become polluted with salt, toxic chemicals, or pathogenic organisms. However, it generally doesn’t go away, globally speaking.

The water, or hydrologic, cycle describes how water moves through the atmosphere, on the Earth’s surface, and underground.

As “surface water” in the lakes, streams, rivers and oceans warms from the sun’s electromagnetic radiation, some evaporates into the atmosphere.

This water vapor in the atmosphere condenses into rain and snow, called precipitation. The precipitation falls on the Earth, eventually feeding into streams, lakes, and oceans. Some of the water seeps into the ground and collects in underground aquifers as groundwater. About 20 percent of the U.S. water supply comes from groundwater.

Groundwater can resurface from springs or it can discharge into lakes, streams, rivers, and oceans. High pressures deep inside the Earth can force groundwater up through artesian wells, or groundwater can be pumped up or pulled up in old-fashioned buckets from wells. (“Artesian” means that there’s sufficient water pressure that the groundwater need not be pumped).

Briones Reservoir in Northern California

Humans use water from the surface sources (lakes, rivers, oceans), we collect rainwater and snowmelt, and we also use groundwater. Most of this water gets discharged back out into waterways or oceans. However, water used in homes and businesses is sent to municipal water treatment, after which it is discharged into waterways, returning to the water cycle.

 

 

GROUNDWATER AND DEPLETION

Groundwater isn’t as free-flowing as surface water. Predicting and modeling how it flows is wildly complex, factoring for what’s dissolved in the water and what materials it’s moving through, in three dimensions. What is easy to say is groundwater moves slower than surface water, and it gets recharged more slowly. Because modeling is complex, and tracking depletion involves drilling wells, it’s far more difficult to gauge groundwater depletion than water shortages on the surface.

When groundwater is depleted, it is still there, just lower down, as many as several hundred feet lower in extreme cases. However unseen it is, groundwater depletion – and the lowering of the water table – is very serious for several reasons.

Trees and plants rely on groundwater, and if they cannot reach water with their roots in regions where it doesn’t rain all year long, they can die, and with them all the life that depends upon them.

For people who rely on well-water, depletion can be equally disastrous. As the depth needed to reach the water increases, the amount of energy required to pump it out also increases. Lowering the water table can pollute the water, as saltwater zones can underly freshwater zones.

And even for those who depend on surface water, which is all of us, groundwater depletion can have its effect because ground water feeds surface water and vice-versa. Groundwater depletion can reduce the amount of water in streams and lakes, even if the effects take years to become obvious.

 

ARE WE SINKING?

An apartment building in Amsterdam, The Netherlands.

As the water table lowers from groundwater depletion, the materials within the ground dry out and the ground can actually collapse in on itself, either suddenly or slowly over time, a phenomenon called subsidence. The most dramatic incidents of subsidence are sinkholes, but most of the sinking is happening imperceptibly slowly. This sinking is why some regions of the Netherlands came to be below sea level; centuries of pumping water out of the peat-based soils shrank them, and the land — protected from flooding by the North Sea and Rhine River waters behind dikes — sunk lower and lower.

Today, subsidence from pumping of water has been recorded all over the United States, but the Santa Clara Valley in California was the first area in the country where land subsidence from human use of groundwater was recognized and the first place that organized remediation to stop the subsidence in 1969, according to a report by the U.S. Geological Survey.

While today the region is best known for its Silicon Valley technology, in the late nineteenth century, Santa Clara was full of fruit orchards irrigated with groundwater, much of it from artesian wells, meaning that the wells filled themselves with the pressure of the water created by confined aquifers. Constant reliance on this easy source of groundwater meant by 1930, wells that formerly filled themselves had to be pumped, and by 1964 one well in downtown San Jose had sunk well over 200 feet below the surface.  As water was permanently removed from the ground, the ground shrank, and by 1984, downtown San Jose had sunk quite substantially, to just 84 feet above sea level from 98 feet above sea level in 1910.

 

For more about water use and energy see here.

more »