Thermodynamics is the study of how energy moves and changes form, usually by way of heat, as suggested by the components of its name: thermo-dynamics. Its laws and equations help to predict what could happen in various situations, based on the temperature, pressure, materials, and shape of a system.

Thermodynamics tells us how to calculate the ultimate temperature of a refrigerator or how much energy we can get out of a steam engine. Thermodynamics can also be applied to chemistry and the world on an atomic level, predicting which compounds are stable at specific temperatures and pressures. Thermodynamics explains why diamonds form naturally and spontaneously from carbon-based compounds deep inside the Earth, but they cannot form spontaneously here on the surface.

Thermodynamics relies on the idea that energy is conserved, even if it is transferred from or to a system to its surroundings through heat, changes in momentum, or other forms of energy.

 

TEMPERATURE AND HEAT

Heat and thermal energy are directly related to temperature. We can’t see individual atoms vibrating in solids, liquids, and gases, but we can feel their kinetic energies as temperature. Atoms in solids, liquids, and gases do vibrate. If they didn’t, they would be at absolute zero, a theoretical state of zero thermal energy at ­-459.67 Fahrenheit.

When there’s a difference between the temperature of the environment and a system within it, thermal energy is transferred between them as heat. Something doesn’t have heat. Instead, as an object or system gains or loses heat, it increases or decreases its thermal energy.

Adjacent objects that exhibit different temperatures will spontaneously transfer heat to try to reach the same temperature as each other, or equilibrium. However, how much energy it takes to change the temperature of an object is based on what its made of, a property called heat capacity or thermal capacity.

Water has a higher heat capacity than steel, for example. An empty pot on the stove takes almost no time to get to 212 degrees Fahrenheit, or the boiling temperature of water. A pot with some water in it will take far much longer to reach the same temperature, because water needs to absorb more energy — per weight, per degree — to gain the same number of degrees as metal. (Even though the vaporization temperature of metal is far, far higher than the water’s).

 

THERMAL ENERGY STORAGE: A SOURCE OF POWER

Thermal energy storage exploits the difference in temperature between a system and the environment. In the late 1800s, Americans used thermal energy storage by cutting blocks of lake ice during the winter and storing them underground packed in insulating wood shavings. When the summer rolled around, they retrieved that stored ice to make food cold, exploiting the difference in temperature to force thermal energy out of the food and into the ice.

Thermal energy storage can also happen in the other direction. Electricity or other forms of energy can be used to heat various materials, which are stored in insulated containers. Later, when the energy is needed, the hot materials can heat water into steam, and that steam can push turbines, which in turn produce electricity.

Solar panels use thermal energy storage. The panels absorb the heat of sunlight and store that energy so it can be transformed into electricity with turbines. There are several kinds of solar panels, but all rely on heat for energy, unlike photovoltaic cells.